ESA Earth Home Missions Data Products Resources Applications
EO Data Access
How to Apply
How to Access
Reference documents
MERIS Product Handbook
MERIS Product Handbook
MERIS Product Handbook
MERIS Credits
MERIS Data Formats Products
MERIS Glossary and reference documents
Optics Glossary
Vegetation Glossary
Water Vapour Glossary
Ocean Colour Glossary
Neural Network Glossary
Meteorology Glossary
Cloud Glossary
Atmosphere Glossary
Product Glossary
Geometry Glossary
Acronyms and Abbreviations
MERIS Instrument
Instrument Characteristics and Performance
MERIS Quality Status
Instrument characteristic
Characterisation and Calibration
Onboard Calibration Hardware
Calibration Modes
Instrument Description
Instrument model philosophy
Instrument Concept
Digital processing Unit
Video Electronic Unit
Detection Focal Plane
Instrument optics
The MERIS instrument
MERIS Products and Algorithms
Auxiliary Files
Common Auxiliary Datasets
Auxiliary Datasets for Level 2 Processing
Auxiliary Datasets for Level 1b Processing
Summary of Auxiliary Datasets
Water Vapour Parameters Data File
Atmosphere Parameters Data File
Level 2 Control Parameters Data File
Aerosol Climatology Data File
Coastline/Land/Ocean Data File
Digital Roughness Model Data File
Radiometric Calibration Data File
MERIS Level 1b Control Parameters Data File
Digital Elevation Model
ECMWF Data Files
ENVISAT Orbit Data Files
Surface Confidence Map File
Land Vegetation Index Parameters Data File
Cloud Measurement Parameters Data File
Ocean II Parameters Data File
Ocean I Parameters Data File
Land Aerosols Parameters Data File
Ocean Aerosols Parameters Data File
MERIS Instrument Data File
MERIS-Specific Topics
Level 2 Products and Algorithms
Level 2 Products
Level 2 Geophysical Products
Annotation data set
Water Vapour products
Land products
Meris Terrestrial Chlorophyll Index
Meris Global Vegetation Index
Aerosol Angström Coefficient
Aerosol optical thickness
Cloud products
Cloud reflectance
Cloud Type
Cloud top pressure
Cloud albedo
Cloud optical thickness
Ocean products
The MERIS Aerosol Angström Coefficient
Aerosol optical thickness
Photosynthetically Active Radiation (PAR)
Yellow substance
Suspended matter
Algal Pigment Index II
Algal Pigment Index I
Normalized water leaving radiance / reflectance
Product description
Level 2 High-Level Organisation of Products
Full Resolution Geophysical Product
Extracted Vegetation Indices
Extracted Cloud Thickness and Water Vapour for Meteo Users
Extracted Cloud Thickness and Water Vapour
Reduced Resolution Geophysical Product
Level 2 Algorithms
Level 2 Accuracies
Level 2 Algorithm Description
MERIS Level 2 Product Formatting Algorithm
Measurement Data Sets
Annotation Data Set "Tie Points Location and corresponding Auxiliary Data"
Global Annotation Data Set - Scaling Factors
Annotation Data Set "Summary Product Quality"
Specific Product Header
Main Product Header
MERIS Land Pixels Processing
MERIS Bottom Of Atmosphere Vegetation Index (BOAVI) (step 2.8)
Atmospheric correction over land (step 2.6.23)
MERIS Top Of Atmosphere Vegetation Index (TOAVI) (step 2.2)
Water Processing
MERIS Ocean Colour Processing (step 2.9)
Clear water atmospheric corrections (step 2.6.9)
Turbid water screening and corrections (steps 2.6.8, 2.6.10)
Water Confidence Checks (step 2.6.5)
Cloud Processing
Cloud type processing (step 2.4.8)
Cloud Optical Thickness processing (step 2.4.3)
Cloud Albedo processing (step 2.4.1)
Total Water Vapour Retrieval
Water vapour polynomial (function)
Range checks (steps 2.3.0, 2.3.6)
Water vapour retrieval over clouds (step 2.3.3)
Water vapour retrieval over water surfaces (steps 2.3.2, 2.3.5)
Water vapour retrieval over land surfaces (step 2.3.1)
MERIS Pixel Identification
Land Identification (step 2.6.26) and Smile Effect Correction (step 2.1.6)
Gaseous absorption corrections (step 2.6.12)
Stratospheric Aerosol Correction (step 2.1.9)
Cloud screening (steps 2.1.2, 2.1.7, 2.1.8)
MERIS Pressure Processing
Atmospheric pressure confidence tests (steps 2.1.2)
Atmospheric pressure estimate (steps 2.1.5, 2.1.12)
MERIS Pre-processing
Pre processing step
Level 1b product check
Level 2 Physical Justification
Level 1b Products and Algorithms
Level 1b product definition
Browse Products
Level 1b Essential Product Confidence Data
Level 1b Engineering Quantities
Level 1b Accuracies
Level 1b High-Level Organisation of Products
Measurement Data Sets
Annotation Data Set "Product Quality"
Annotation Data Set "Tie Points Location and corresponding Auxiliary Data"
Global Annotation Data Set
Specific Product Header
Main Product Header
Full Resolution Geolocated and Calibration TOA Radiance
Reduced Resolution Geolocated and Calibration TOA Radiance
Level 1b Algorithms
External Data Assimilation
Pixel Classification
Stray Light Correction
Radiometric Processing
Saturated Pixels
Source Data Packet Extraction
Level 0 Products
Product Evolution History
Definitions and Conventions
Notations and Conventions
Product Grid
Organisation of Products
MERIS product data structure
File naming convention
Acquisition identification scheme
Product identification scheme
Latency, Throughput and Data Volume
MERIS products overview
MERIS product types
Full and reduced resolutions
MERIS product processing levels
MERIS User Guide
Image gallery
How to Use MERIS Data
Software Tools
General Tools
How to Choose MERIS Data
Summary of Applications vs. Products
Special Features of MERIS
Geographical Coverage
Principles of Measurement
Scientific Background
Mission Objectives
MERIS Level 3 products
Geophysical Measurements
MERIS Product Handbook
Site Map
Frequently asked questions
Terms of use
Contact us
 Clear water atmospheric corrections (step 2.6.9)

The objective of the clear water atmosphere correction is to identify and subtract from the TOA reflectances (corrected for stratospheric aerosols, gaseous absorption and Sun glint), the contribution of the atmosphere, which consists of molecular (Rayleigh) and particulate (aerosol) scattering and extinction. The correction is performed in order to provide normalised water-leaving reflectances.

A secondary objective is to estimate aerosol products: type and optical thickness.

The principle of the clear water atmosphere correction is to identify aerosol models which, together with a tabulated model of the molecular scattering and assumptions on the surface reflectance, fit the observed glint-corrected reflectance in the infra-red part of the spectrum (bands 705, 775, 865nm) and in a visible band (510nm).

The assumptions for Case 1 waters are that reflectance is null at all wavelengths beyond 700nm, and that reflectance at 510nm is nearly constant.

The output of the turbid water atmosphere correction (step 2.6.10, see section above) provides as input estimates of the water reflectance at the bands used by the algorithm.

The algorithm provides one or two aerosol models and their properties in the visible and NIR wavelength domain, which allow to perform a correction of the atmosphere contribution and compute water-leaving reflectances.

The water-leaving reflectances output by the atmosphere corrections above water are normalised in order to remove dependency of the signal upon atmosphere conditions. The normalised water-leaving reflectance product r'w is defined as follows:

where Lw is the water-leaving radiance and Ed (0+) the down-welling irradiance.

The water-leaving reflectance is used by other sub-steps and provided to the Product formatting (step 2.10). This step is applied to all pixels where ACFAIL_F is FALSE. Path reflectance estimate (step

When starting the atmospheric correction, we dispose of the (measured) total glint corrected reflectance ROGC, and of rR(l) for each wavelength. When turbid case 2 water has been detected by a previous step, we also have an estimate of the marine reflectance at TOA, trw_C2.

Atmospheric corrections need an estimate of the contribution of the sky to the total reflectance, or path reflectance, at four wavelengths.

In Case 1 waters, the Infra-Red (IR) contribution of water to the signal is neglected, so that we have, at 775 and 865nm:

rpath (l) = ROGC (l).

This is also performed at band 510nm, even though the water contribution is not negligible in the visible. That estimate will be useful in the MERIS aerosol model (see below).

In turbid Case 2 water, we subtract the water contribution so that

rpath (l) = ROGC (l)– trw_C2 (l) MERIS aerosol model (step

When starting the aerosol correction, we dispose on one hand of the path reflectance rpath at four wavelengths, and of the TOA reflectance ROGC(l) and Rayleigh reflectance rR(l) for each wavelength, and on the other hand of tabulated relationships linking the ratio rpath /rR to the aerosol optical thickness ta(l), for N aerosol models.

The central problem is the selection, among a set of aerosol models, of the two models that most closely bracket the actual aerosol. The principle is to rely on the look-up tables, which should allow :

- To calculate the values of ta(865) from the rpath(865)/rR(865) ratio, for several aerosol models,

- To extrapolate ta from 865 to 775 nm, for each aerosol model,

- To obtain the (rpath(775) / rR(775)) ratios from ta(775), for each aerosol model. These ratios computed from aerosol model, will be noted z(l) in the following.

- To select a couple of aerosol models, by comparing the actual (rpath(775) / rR(775)) ratio, and the various z(775) ratios as obtained at the previous step.

- To estimate the z(l) ratio in the visible bands from the knowledge of the spectral behaviour of this couple of aerosol models.

The successive steps of such a correction scheme are as follows. For a given pixel, and thus for a given geometry (qs, qv, Df):

(1) The ratio rpath(l) / rR(l) is computed at 865 and 775 nm, rR(l) being taken in tabulated values (at these wavelengths, and for oceanic Case 1 waters,
rpath = ROGC).

(2) A first set of N aerosol models is selected, which, in principle, is representative of clear oceanic atmospheres. For these N aerosol models, N ta(865) values are calculated from the (rpath(865) / rR(865)) ratio.

(3) N values of ta(775) are computed for the N aerosol models, from the knowledge of their spectral optical thicknesses (normalised by their values at 865 nm; tabulated values).

(4) N values of z (775) are computed from the N values of ta(775) for the N aerosol models, from the tabulated relationships between both quantities.

(5) The actual (rpath(775) / rR(775)) is then compared to the N individual values of z(775) obtained at step (4), and the 2 that most closely bracket the actual one indicate the two candidate aerosol models.

(6) 2 values of ta(l) are calculated for bands at 510 nm and 705 nm from the normalised spectral optical thicknesses of the 2 “bracketing” aerosol models. Step (2) is now inverted, to calculate two z(l) ratios from the two ta(l) at 510 nm and 705 nm.

(7) The following step lies on the assumption that the actual (rpath(l) / rR(l)) ratio falls between the two z(l) ratios calculated at step (6), proportionally, in the same manner as it does at 775 nm. rpath(l) is now estimated for bands at 510 nm and 705 nm.

(8) By making an assumption on the normalised water-leaving reflectance at 510 nm, the error in the atmospheric correction at 510 nm, Dr 510, can be assessed.

(9) A test is then made on this Dr510 value, if a number of conditions are met. If those conditions are not met, the correction is continued at step (10). Otherwise, depending on the test result, either the correction is continued at step (10), or it is carried out once more from step (2), by selecting however a different set of N’ aerosol models. In the latter situation, the correction is actually carried out for several aerosol databases, so that steps 2-8 are carried out several times; several couples of aerosol models are then selected (one at each time steps 2-8 are done), and the one which is retained at the end is the one that leads to the lowest Dr510.

(10) For every wavelength l of the visible domain, 2 values of ta are calculated from the knowledge of the spectral scattering coefficients of the 2 “bracketing” aerosol models.

(11) Step (2) is now inverted, to calculate two z(l) ratios from the two ta(l) for the visible bands, and then to obtain rpath(l) (see step 7). Correction (step

At then end of the MERIS model step, we now have an estimate of the path reflectance and aerosol optical parameters at all visible and NIR wavelengths where the atmospheric correction is required.

The water-leaving reflectance at the instrument level is then obtained as :

tu(l).td(l).r’w(l) = ROGC(l) - rpath*(l)

The following step consists in calculating the diffuse transmittance, downward td(l) and upward tu(l), in order to retrieve the normalised water-leaving reflectance at surface level r’w(l).

Keywords: ESA European Space Agency - Agence spatiale europeenne, observation de la terre, earth observation, satellite remote sensing, teledetection, geophysique, altimetrie, radar, chimique atmospherique, geophysics, altimetry, radar, atmospheric chemistry